HUBUNGAN PENGUKURAN LEMAK SUBKUTAN DENGAN INDEKS MASSA TUBUH PADA LAKI-LAKI USIA LANJUT

Siti Nur Fatimah, Leva B Akbar, Ambrosius Purba, Vita Murniati Tarawan, Gaga Irawan Nugraha, Putri Tessa Radhiyanti, Titing Nurhayati

Abstract


Degenerative diseases are associated with obesity. Body mass index (BMI) measurement is a way to measure disease risk,howeverfat mass more explain metabolic conditions associated with degenerative diseases. Research shows consistent relation between these two parameters with diseases risk. This study aims to determine the association of fat mass by skinfold thickness measurement with BMI. The study design was observational with cross-sectional approach. This research was done at the UniversitasPadjadjaran in 2015. The number of subjects were 96 men with the inclusion criteria over 50 years, exclusion criteria have abnormal posture and edema. Statistical analysis used Spearman rank correlation test and a simple linear regression. Characteristics of age 67.98 (SD: 9.81) years, height 1.61 (SD: 0.61) m, weight 66.67 (SD: 10.74) kg, BMI: 26.28 (SD 3,55) kg / m2, body fat: 30.98 percent. The distribution of nutritional status category: underweight 2 percent, normoweight 11.9 percent, overweight 27.27 percent, obese 58.4 percent. Fat mass category: normal category 41.6 percent and overfat 58.4 percent. Correlation between fat mass with age of 0.094 percent, with heights 0.14 percent and with a BMI 0.55 percent. Simple linier regression analysis shows the equation: percent fat mass = 2,757 + 0.089. This equation means every increase of 1 BMI will increase the fat mass percent by (2.757 + 1*0.089)2. The implications of this equation show that BMI can predict fat mass in elderly men based on subcutaneous fat thicknessmeasurements.

 

Penyakit degeneratif berhubungan dengan faktor risiko obesitas. Pengukuran indeks massa tubuh (IMT) merupakan cara untuk mengukur risiko penyakit, tetapi massa lemak dapat menggambarkan kondisi metabolik yang berhubungan dengan penyakit degeneratif. Penelitian menunjukkan hubungan konsisten antara kedua parameter ini dengan risiko penyakit. Penelitian ini bertujuan untuk mengetahui hubungan antara massa lemak berdasarkan pengukuran tebal lemak subkutan dengan IMT. Disain penelitian adalah observasional dengan pendekatan potong lintang. Penelitian dilakukan di kampus Universitas Padjadjaran tahun 2015. Jumlah subjek 96 laki-laki dengan kriteria inklusi di atas 50 tahun, kriteria ekslusi  memiliki postur tubuh tidak normal dan edema. Variabel bebas adalah umur, tinggi badan dan IMT, variabel tergantung adalah massa lemak. Analisis statistik menggunakan uji korelasi Spearman rank dan uji regresi linier sederhana.Karakteristik usia 67,98(SD: 9,81) tahun, tinggi badan 1,61(SD : 0,61) m, berat badan 66,67 (SD : 10,74) kg, IMT: 26,28 (SD : 3,55) kg/m2, lemak tubuh: 30,98 persen.Sebaran kategori status giziterdiri dari berat badan kurang 2 persen, normal 11,9 persen, berat badan lebih 27,27 persen, obesitas 58,4 persen. Kategori massa lemak terdiri dari kategori normal 41,6 persen dan lebih 58,4 persen. Korelasi antara massa lemak dengan usia0,094 persen, dengan tinggi badan 0,14 persen dan dengan IMT 0,55 persen. Analisis regresi linier menghasilkan persamaan: persen massa lemak = 2,757 + 0.089 (IMT). Persamaan ini mempunyai arti setiap peningkatan 1 IMT akan meningkatkan persen massa lemak sebesar (2,757 + 1*0,089)2. Implikasi persamaan ini memperlihatkan IMT dapat memprediksi massa lemak pada laki-laki lanjut usia berdasarkan pengukuran tebal lemak subkutan.


Keywords


indeks massa tubuh; lanjut usia; massa lemak

References


Indonesia, Badan Penelitian dan Pengembangan Kesehatan, Kementerian Kesehatan Republik Indonesia. Riset kesehatan dasar 2007. Jakarta: Badan Penelitian dan Pengembangan Kesehatan, Kementerian Kesehatan RI, 2007.

Indonesia, Badan Penelitian dan Pengembangan Kesehatan, Kementerian Kesehatan Republik Indonesia. Riset kesehatan dasar 2013. Jakarta: Badan Penelitian dan Pengembangan Kesehatan, Kementerian Kesehatan RI, 2013.

Peterson C, Thomas D, Blackburn G, and Heymsfiled S. Universal equation for estimating ideal body weight and body weight at any BMI. Am J Clin Nutr. 2016; 103:1193-1194.

World Health Organization [WHO] Technical Report Series. Obesity: preventing and managing the global epidemic. Geneva: World Health Organization, 2000.

Jiha J, Mukherjeaa A, Vittinghoffd E, Nguyena T, Tsohb J, Fukoakab Y, et al. Using appropriate body mass index cut points for overweight and obesity among Asian Americans. Prev Med. 2014;65:1-6.

Colosia A, Palencia R, and Khan S. Prevalence of hypertension and obesity in patients with type 2 diabetes mellitus in observational studies: a systematic literature review. Diabetes Metab Syndr Obes. 2013;6:327-38. doi:10.2147/DMSO. S51325.

Dulloo A, Jacquet J, Solinas G, Montani J, and Schutz Y. Body composition phenotypes in pathways to obesity and the metabolic syndrome. Int J of Obesity. 2010;34:S4-S17.

Gibson R. Principles of nutritional assessment. 2nd ed. New York: Oxford University Press, 2005. pp. 259-292.

Changa S, Beasona T, Hunletha J, Colditza G. A Systematic review of body fat distribution and mortality in older people. Maturitas. 2012;72(3):175–191.

Lee RD, and Nieman DC. Nutritional assessment, 6thed. New York: McGraw-Hill, 2013. pp 185-198.

Chung J, Kang H, Lee D, Lee H, and Lee Y. Body composition and its association with cardiometabolic risk factors in the elderly: a focus on sarcopenic obesity. Archives of Gerontology and Geriatry. 2013;56(1):270-278.

Müller M, Geisler C, Pourhassan M, Glüer C, and Bosy-Westphal A. Assessment and definition of lean body mass deficiency in the elderly. Eur J Clin Nutr. 2014; 68:1220-1227.

Dietz H. Obesity. In: Shills ME, Shike M, editors. Modern nutrition in health and disease. 10th ed. Baltimore: Lipincott Williams & Wilkins, 2008. pp. 981-990.

Newman A, Lee J, Visser M, Goodpasteur B, Kritchevsky S, Tylavsky A, et al. Weight change and the conservation of lean mass in old age: the health, aging and body composition study. Am J Clin Nutr. 2005;82:872-8.

Douchi T, Kuwahata R, Matsuo T, Uto H, Oki T, and Nagata Y. Relative contribution of lean and fat mass component to bone mineral density in males. J of Bone & Mineral Metab. 2003; 21:17-21.

Ranasinghe C, Gamage P, Katulanda P, Andraweera N, Thilakarathne S, and Tharanga P. Relationship between Body mass index (BMI) and body fat percentage, estimated by bioelectrical impedance, in a group of Sri Lanka adults: a cross sectional study. BMC Pub Health. 2013;13:797. doi: 10.1186/1471-2458-13-797.

Kyle U, Total body mass, fat mass, fat-free mass, and skeletal muscle in older people: cross-sectional differences in 60-year-old persons. American Geriatric Society. 2011;49(12):1633-1640.

Zhang C, Rexrode K, van Dam R, Li T, and Hu F. Abdominal obesity and the risk of all-cause, cardiovascular, and cancer mortality: sixteen years of follow-up in US women. Circulation. 2008;117:1658-67.

Goonasegaran A, Nabila F, and Shuhada N. Comparison of the effectiveness of body mass index and body fat percentage in defining body composition. Singapore Med J. 2012;53(6):4030.


Full Text: PDF

Refbacks

  • There are currently no refbacks.



Penelitian Gizi dan Makanan ( p-ISSN: 0125-9717. e-ISSN: 2338-8358) is published by National Institute of Health Research and Development, Ministry of Health of Republic of Indonesia

http://ejournal.litbang.depkes.go.id/index.php/pgm/


Indexed by:

Statistik Pengunjung: View My Stats
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.